Sabina Leanti La Rosa

Sabina Leanti La Rosa

Førsteamanuensis

  • Faggruppe dekan

I received my PhD in 2014 from the Norwegian University of Life Sciences, working with Prof. Ingolf F. Nes and Dr Dag Brede on the biology of Enterococcus faecalis. I then trained as a postdoc with Barbara E. Murray, MD at the University of Texas Health Science Center in Houston (TX, USA), investigating the genetic and biochemical mechanism of enterococcal pathogenicity. I continued with a second postdoc in the lab of Assoc. Prof. Bjørge Westereng, focusing on the enzymatic mechanisms through which gut commensal Firmicutes degrade beta-mannans. In 2018, I joined the lab of Prof. Phil B. Pope at the Norwegian University of Life Sciences (the Microbial Ecology and Meta-omics group) to work on multi-omics (metagenomics, metatranscriptomics, metaproteomics and metabolomics). Since 2022, I am an Associate Professor of Microbiology at NMBU. My current research interests include 1) investigating the ability of diet- and wood-derived carbohydrates to modulate the composition and metabolic output of the gut microbiota in humans, monogastric farm animals and fish; 2) the use of multi-omic tools to decrypt mechanistic connections between diet, host  and its microbiome; 3) the mechanism through which gut bacteria break down food additives and human milk oligosaccharides. My research activity is reflected in multiple papers  in high-impact journals, including Nature Microbiology, Nature Communications, PNAS, Nucleic Acids Research and mBio among others.

You can follow me on Twitter

    • Gut microbiomes
    • Carbohydrate Active Enzymes (CAZymes)
    • Multi-omics
    • Glycans
    • Prebiotics
  • Liste med publikasjoner fra min forskning. (Cristin)

    Google Scholar

    ORCID

     Pre-prints:

    1. Thurimella KMohamed AMTGraham DBOwens RMLa Rosa SLPlichta DRBacallado SXavier RJ. Protein Language Models Uncover Carbohydrate-Active Enzyme Function in Metagenomic. bioRxiv 2023.10.23.563620; doi: https://doi.org/10.1101/2023.10.23.563620

    2. Vera-Ponce de Leon, A, Hötzinger, M, Hensen, TM, Gupta, S, Weston, B, Johnsen, SJM, Rasmussen, JA, Clausen, C, Pless, L, Verissimo, AR, Rudi, K, Snipen, LG, Karlsen, CR, Limborg, MT, Bertilsson, S, Thiele, I, Hvidsten, TR, Sandve, SR, *Pope, PB, *La Rosa, SL (2023). The Salmon Microbial Genome Atlas enables novel insights into bacteria-host interactions via functional mapping. biorRxiv 2023.12.10.570985v1; doi: https://doi.org/10.1101/2023.12.10.570985. *equal contribution

    3.  Gupta, S, Vera-Ponce de Leon, A, Kodama, M, Hötzinger, M, Clausen, C, Pless, L, Verissimo, AR, Stenger, B, Calabuig, V, Kvingedal, R, Skugor, S, Westereng, B, Harvey, TN, Norborg, A, Bertillson, S, Limborg, MT, Mørkøre, T, Sandve, SR, Pope, PB, *Hvidsten, TR, *La Rosa, SL (2023). bioRxiv 2024.02.29.582783v1; doi: https://doi.org/10.1101/2024.02.29.582783. *equal contribution

     

    List of publications:

    32. Zuffa S, Schmid R, Bauermeister A, Gomes PWP, Caraballo-Rodriguez A, Abiead YE, Aron A, Gentry E, Zemlin J, Meehan M, Avalon N, Cichewicz R, Buzun E, Carrillo-Terrazas M, Hsu CY, Oles R, Ayala AV, Zhao J, Chu H, Kuijpers M, Jackrel S, Tugizimana F, Nephali L, Dubery I, Madala N, Moreira E, Costa-Lotufo L, Lopes N, Rezende-Teixeira P, Jimenez P, Rimal B, Patterson A, Traxler M, Pessotti RC, Alvarado-Villalobos D, Tamayo-Castillo G, Chaverri P, Escudero-Leyva E, Quiros-Guerrero LM, Bory A, Joubert J, Rutz A, Wolfender JL, Allard PM, Sichert A, Pontrelli S, Pullman B, Bandeira N, Gerwick W, Gindro K, Massana-Codina J, Wagner B, Forchhammer K, Petras D, Aiosa N, Garg N, Liebeke M, Bourceau P, Kang KB, Gadhavi H, de Carvalho LP, Dos Santos MS, Pérez-Lorente A, Molina-Santiago C, Romero D, Franke R, Broenstrup M, De Leon AVP, Pope P, La Rosa SL, Barbera G, Roager H, Laursen M, Hammerle F, Siewert B, Peintner U, Licona-Cassani C, Rodriguez-Orduña L, Rampler E, Hildebrand F, Koellensperger G, Schoeny H, Hohenwallner K, Panzenboeck L, Gregor R, O'Neill E, Roxborough E, Odoi J, Bale N, Ding S, Damsté JSS, Guan X, Cui J, Ju KS, Silva D, Silva F, da Silva G, Koolen H, Grundmann C, Clement J, Mohimani H, Broders K, McPhail K, Ober-Singleton S, Rath C, McDonald D, Knight R, Wang MPieter C. Dorrestein. microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. Nat Microbiol. 2024 Feb 5. doi: 10.1038/s41564-023-01575-9

    31. Porcellato D, Kristiansen H, Finton MD, La Rosa SL, da Silva Duarte V, Skeie SB. Composition and fate of heat-resistant anaerobic spore-formers in the milk powder production line. Int J Food Microbiol. (2023) 2;402:110281. 

    30. Ferrillo, A, Kobel, CM, Vera-Ponce de León, A, La Rosa, SL, Kunath, BJ, Pope, PB, Hagen, LH. Long-Read Metagenomics and CAZyme Discovery. Methods Mol Biol. (2023); 2657:253-284. 

    29. La Rosa, SL, Lindstad, LJ, Westereng, B. Carbohydrate esterases involved in deacetylation of food components by the human gut microbiota. Essays Biochem (2023); EBC20220161. IF: 7.25

    28. Leivers,  SA, Lagos, L, Garbers, P, La Rosa, SL, Westereng, B. Technical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling. Communications Biology (2022) 5, 444. IF: 5.49

    27. *Ostrowski, MP, *La Rosa, SL, Kunath, BJ, Robertson, A, Pereira, G, Hagen, LH, Varghese, N, Yao, T, Flint, G, McDonald, S, Buttner, D, Pudlo, NA, Schnizlein, MK, Young, VB, Brumer, H, Schmidt, T, Terrapon, N, Lombard, V, Henrissat, B, Hamaker, B, Eloe-Fadrosh, EA, Tripathi, A, ^Pope, PB, ^ Martens, EC. Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nature Microbiology. (2022) Apr;7(4):556-569.*equal contribution. IF: 17.74

    26. La Rosa, SL, Ostrowski, MP, Vera-Ponce de Leon, A, McKee, LS, Larsbrink, J, Eijsink, VG, Lowe, EC, Martens, EC, Pope, PB. Glycan processing in gut microbiomes. Current Opinion in Microbiology. (2022) 67:June 2022, 102143. IF: 7.93

    25. Lindstad, L, Lo, G, Leivers, S, Lu, Z, Michalak, L, Pereira, GV, Røhr, AK, Martens, EC, McKee, LS, Louis, P, Duncan, SH, Westereng, B, Pope, PB, La Rosa, SLHuman gut Faecalibacterium prausnitzii deploys a highly efficient conserved system to cross-feed on β-mannan-derived oligosaccharides. mBio (2021) 12:e03628-20. IF: 6.8

    24. McKee, LS, La Rosa, SL, Westereng, B, Eijsink, VG, Pope, PB, Larsbrink, J. Polysaccharide degradation by the Bacteroidetes — mechanisms and nomenclature. Environmental Microbiology Reports. (2021) 13(5):559-581. IF: 3.54

    23. Jameson, JK, Mathisen, G, Pope, PB, Westereng, B, La Rosa, SL. Biochemical characterization of two cellobiose 2-epimerases and application for efficient production of lactulose and epilactose. Current Research in Biotechnology (2021). 3:57-64.

    22. Michalak, L, Gaby, JC, Lagos, L, La Rosa, SL, Hvidsten, TR, Tetard-Jones, C, Willats, W, Terrapon, N, Lombard, V, Henrissat, B, Arntzen, MØ,  Hagen, LH, Dröge, J, Øverland, M, Pope, PB, Westereng, B. Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut. Nature Communications 11, 5773 (2020). doi:10.1038/s41467-020-19585-0. IF: 14.9

    21. Shaffer, M, Borton, MA, McGivern, BB, Zayed, A, La Rosa, SL, Solden, L, Liu, P, Narrowe, A, Rodríguez-Ramos, J, Bolduc, B, Gazitua, C, Daly, R, Smith, G, Vik, D, Pope, PB, Sullivan, M, Roux, S, Wrighton, KC. (2020) DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Research. 2020 Sep 18;48(16):8883-8900. IF: 16.9.

    20. Kujawska, M, La Rosa, SL, Roger, LC, Pope, PB, Hoyles, L, McCartney, A, Hall, LJ. (2020) Succession of Bifidobacterium longum strains in response to the changing early-life nutritional environment reveals specific adaptations to distinct dietary substrates. iScience. 23, 101368. IF: 5.45

    19. Lagos, L, La Rosa, SL, Arntzen, MØ, Anestad, R, Terrapon, N, Gaby GC, Westereng, B (2020). Isolation and Characterization of Extracellular Vesicles Secreted In Vitro by Porcine Microbiota. Microorganisms 2020, 8(7), 983. IF: 4.15

    18. Dysvik, A, La Rosa, SL, De Rouck, G, Rukke, EO, Westereng, B, Wicklund, T (2020). Microbial dynamics in traditional and modern sour beer production. Applied Environmental Microbiology. 86:e00566-20. IF: 4.8

    17. Michalak, L, La Rosa, SL, Leivers, S, Lindstad, LJ, Rørh, ÅK, Aachmann, F, Westereng, B (2020). A pair of esterases from a commensal gut bacterium remove acetylations from all positions on complex β-mannans. PNAS. 2020 Mar 13. pii 201915376. doi.org/10.1073/pnas.1915376117. IF: 9.6

    16. Dysvik, A, La Rosa, SL, Liland, KH, Myhrer, KS, Høstlie, HM, De Rouck, G, Rukke, EO, Westereng, B, Wicklund, T (2020). Co-fermentation involving saccharomyces cerevisiae and Lactobacillus species tolerant to brewing-related stress factors for controlled and rapid production of sour beer. Front Microbiol. 2020 Feb 21;11:279. IF: 5.3

    15. Dysvik, A, La Rosa, SL, Buffetto, F, Liland, KH, Myhrer, KS, Rukke, EO, Wicklund, T, Westereng, B (2020). Secondary lactic acid bacteria fermentation with wood-derived xylooligosaccharides as a tool to expedite sour beer production. J Agric Food Chem. 2020 Jan 8;68(1):301-314. IF: 4.2

    14. La Rosa, SL, Leth, ML, Michalak, L, Hansen, ME, Pudlo, NA, Glowacki, R, Pereira, G, Workman, CT,  Arntzen, MØ, Pope, PB, Martens, EC, Hachem, MA, Westereng, B (2019). The Human Gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nature Communications. doi: 10.1038/s41467-019-08812-y. IF: 14.9

    13. La Rosa, SL, Kachrimanidou, V, Buffetto, F, Pope, PB, Pudlo, N, Martens, EC, Rastall, R, Gibson, G, Westereng, B (2019). Wood-derived Dietary Fibers Promote Beneficial Human Gut Microbiota. mSphere. doi:10.1128/mSphere.00554-18. IF: 4.4

    12. La Rosa, SL, Montealegre, MC, Singh, KV, Murray, BE. Enterococcus faecalis Ebp pili are important for cell-cell aggregation and intraspecies gene transfer. Microbiology (2016) May;162(5):798-802.

    11. Somarajan*, SR, La Rosa*, SL, Singh, KV, Höök, M, Murray, BE. The fibronectin-binding protein Fnm contributes to adherence to extracellular matrix components and virulence of Enterococcus faecium TX82. Infection and Immunity (2015) Sep 14. Pii. IAI.00885-15. PMID:26371130. *Equally contributing authors. IF: 4.16

    10. Singh, KV, La Rosa, SL, Somarajan, SR, Roh, JH, Murray, BE. The fibronectin-binding protein EfbA contributes to pathogenesis and protects against infective endocarditis caused by Enterococcus faecalis. Infection and Immunity (2015) Sep 8. Pii. IAI.00884-15. PMID:26351286. IF: 4.16

    9. Montealegre, MC, La Rosa, SL, Roh, JH, Harvey, B, Murray, BE. The E. faecalis EbpA start codon: ATTenuation of Expression, Biofilm Formation and Adherence to Fibrinogen Starts with ATT. mBIO (2015) 26;6(3) pii: e00467-15. PMID: 26015496. IF: 6.88

    8. La Rosa, SL, Snipen, LG, Murray, BE, Willems, RJ, Gilmore, MS, Diep, DB, Nes, IF, Brede, DA. A genomic virulence reference map of Enterococcus faecalis reveals a central role of phage03-like elements in nosocomial genetic lineages to pathogenicity in Caenorhabditis elegans infection model. Infection and Immunity (2015) May;83(5):2156-67. PMID:25776747. IF: 4.16

    7. Dundar, H, Brede, DA, La Rosa, SL, El-Gendy, AO, Diep, DB, Nes, IF. Fsr quorum sensing system and cognate gelatinase coordinates expression and processing of pro-protein EF1097 into mature antimicrobial peptide enterocin P16. Journal of Bacteriology (2015) Mar 2. pii: JB.02513-14. PMID: 25733609. IF: 3.2

    6. La Rosa SL, Solheim, M, Nes, IF, Diep, DB, Brede, DA. Bioluminesence based biosensors for quantitative detection of enterococcal peptide pheromone activity reveals inter-strain telesensing in vivo during polymicrobial systemic infection. Scientific Reports (2015) 5, 8339; DOI:10.1038/srep08339. PMID: 25661457. IF: 5.58

    5. Galloway-Pena, J, Liang, X, Singh, KV, Yadav, P, Chang, C, La Rosa, SL, Shelburne, SA, Ton-That, H, Hook, M, Murray, BEM. The identification and functional characterization of WxL proteins from Enterococcus faecium reveal surface proteins involved in extracellular matrix interactions. Journal of Bacteriology. 2015 Mar 1;197(5):882-92. PMID: 25512313. IF: 3.2

    4. Roh Hyeob, J, Singh, KV, La Rosa, SL, Cohen, AL, Murray, BEM. The two-component system GrvRS (aka EtaRS) regulates ace expression in Enterococcus faecalis OG1RF. Infection and Immunity. 2015 Jan; 83(1): 389-95. PMID: 25385790. IF: 4.16

    3. Solheim, M, La Rosa, SL, Mathiesen, T, Snipen, LG, Nes, IF, Brede, DA. Transcriptomic and Functional Analysis of NaCl-Induced Stress in Enterococcus faecalis. PLoS One. 2014 Apr 22;9(4):e94571. PMID: 24755907. IF: 3.2

    2. La Rosa, SL, Casey PG, Hill, C, Diep, DB, Nes, IF, Brede, DA.  In vivo assessment of growth and virulence gene expression during commensal and pathogenic lifestyles of luxABCDE tagged Enterococcus faecalis in murine gastro intestinal and intravenous infection models. Applied Environmental Microbiology 2013. July; 79(13):3986-3997. Selected by the editors as article of significant interest in this AEM issue. PMID: 23603680. IF: 4.8

    1. La Rosa, SL, Diep, DB, Nes, IF, Brede, DA. Construction and application of a luxABCDE reporter system for real-time monitoring of Enterococcus faecalis gene expression and growth. Applied Environmental Microbiology 2012 Oct; 78(19):7003-11. PMID: 22843522. IF: 4.8

     

    Mine publikasjoner

  • Course Responsible: MVI322 Pathogenic Microorganisms

    Guest lecturer: BIO335 Applied Biocatalysis and Biorefining 

    Guest lecturer: BIO326 Genome Sequencing; Tools and Analysis

  • Now Fellow of the NMBUs Research Talent 2021-2022 program.

    Scope: NMBU focuses on young talents who have both potential, will and desire to develop as researchers, supervisors and innovators. Through NMBU's development programme "Research talents for sustainability", the university has named 21 new talents for 2021-2022. 

    My contribution: https://www.nmbu.no/aktuelt/node/42454

     

    Meet me at Meetings/Conferences:

    2024

    -  The 7th LignoBiotech International Conference, October 14-17 2024, Toulouse (France). Invited Talk

    ISME19 (19th International Symposium on Microbial Ecology), August 18-23 2024, Cape Town (South Africa). Invited Talk in the session "Understanding microbiome dynamics to improve human health".

    2023

    - The Rowett Institute at the University of Aberdeen, November 7th, Aberdeen (UK). Invited Talk.

    - The University of Birmingham Institute of Microbiology and Infection, November 3rd, Aberdeen (UK). Invited Talk.

    FindingPheno Stakeholder Symposium, November 1st, EMBL-EBI Hinxton (UK). Invited Talk.

    - Annual Meeting of the National Graduate School in Infection Biology and Antimicrobials, October 9-10, Oslo (Norway). Invited Talk

    - 33rd Society for Cytometry Conference. September 19-21 2023, Berlin (Germany). Invited Talk.

    - Norwegian Society for Microbiology (NFM) meeting. September 14th, Stavanger (Norway).

    - 4th International Fish Microbiota workshop, September 6-9, Wageningen (The Netherlands).

    - International Gut Microbiology Symposium 2023. June 13 - 15 2023, Aberdeen (UK). Invited Talk.

    - Norwegian Biochemical Society contact meeting 2023. January 19 - 22, Storefjell (Norway).

    2022

    - Norwegian Society for Microbiology (NFM) meeting, November 9th 2022, Domus Odontologica, Oslo (Norway). The Salmon Microbial Genome Atlas enables novel insights into bacteria-host interactions via functional mapping. Oral Presentation

    - Microbiome Interactions in Health and Disease conference, 24-26 October 2022, Wellcome Genome Campus, Hinxton (UK). "Designer fiber" for the precise manipulation of animal gut microbiomes. Invited Talk.

    - CBM14 (Carbohydrate Bioengineering Meeting). September 25th-28th 2022, Norefjell (Norway). Integrating multi-omics and enzymology to untangle systems for typical and atypical glycan deconstruction in gut microbiomes. Invited Talk.

    CIGENE seminar series. April 6th 2022, Ås (Norway). Decrypting the mechanism for xanthan gum processing by human gut bacteria through multi-omics and enzymology. Invited Talk

     2021

    - The 9th National Microbiota Conference. 11 November  2021, Oslo (Norway). Inclusion of the Food Additive Xanthan Gum Into Diet Drives Adaptation of the Human Gut Microbiota. Oral Presentation.

     

    Science outreach (selected articles)

    Styr unna is med tilsetningsstoffer og lag heller din egen (aftenposten.no) or

    Widely used food additive affects the human gut microbiota | NMBU

    Widely used food additive affects the human gut microbiota (medicalxpress.com) 

    Study helps explain how xanthan gum, a common food additive, is processed in the gut -- ScienceDaily

    Funn om tilsetningsstoff overrasker forskerne - Vektklubb

    Kjent tilsetningsstoff i mat påvirker tarm­bakteriene våre (forskning.no)

    Microbiote intestinal : 10 aliments avec l'additif E415 capable de le modifier (medisite.fr)

    Descubren cómo un aditivo alimentario muy común altera la microbiota intestinal | El Mundo al Instante

    Firmicutes also have PULs, Uncovering the mechanisms on how a prominent human gut Firmicute munches on β-mannan | Nature Portfolio Microbiology Community

    Study suggests prebiotic role of common trees fibers | Feedstuffs

    Study Suggests Dietary Fibers from Common Trees Promote Gut Health | ASM.org